Частная генетика растений ядерная мужская стерильность. Создание гетерозисных гибридов лука с использованием цмс растений. Ядерная мужская стерильность

Один из самых ярких примеров цитоплазматического наследования – явление цитоплазматической мужской стерильности (ЦМС), обнаруженное у многих растений – кукурузы, лука, свеклы, льна и др.

Цитоплазматическая мужская стерильность у кукурузы была открыта в 30-х годах одновременно в СССР М. И. Хаджиновым и в США М. Родсом. Кукуруза – однодомное растение, женские цветки у нее собраны в початок, мужские – в метелку. У некоторых сортов кукурузы были обнаружены растения, имевшие в метелках недоразвитые пыльники, часто совершенно пустые, а иногда с недоразвитой стерильной пыльцой. Оказалось, что этот признак определяется особенностями цитоплазмы. Опыление растений с мужской стерильностью нормальной пыльцой с других растений в большинстве случаев дает в потомстве растения со стерильной пыльцой. При повторении этого скрещивания в течение ряда поколений признак мужской стерильности не исчезает, передаваясь по материнской линии. Даже тогда, когда все 10 пар хромосом растений со стерильной пыльцой замещаются хромосомами от растений с фертильной пыльцой, мужская стерильность сохраняется. Это послужило убедительным доказательством того, что наследование данного признака осуществляется через цитоплазму. Цитоплазма, обусловливающая стерильность пыльцы, была обозначена символом cyt S (стерильная цитоплазма), а цитоплазма растений с фертильной пыльцой – символом cyt N (нормальная цитоплазма).

Установлено, что генотип растения может оказывать опреде­ленное влияние на действие стерильной цитоплазмы. Цитоплазма cyt S может обусловить стерильность пыльцы только при наличии в генотипе растения рецессивного гена rf в гомозиготном состоянии rfrf. Если же этот ген представлен доминантной аллелью Rf, то растение cyt S RfRf или cyt S Rfrf имеет нормальную пыльцу. Аллель Rf является, таким образом, восстановителем фертильности пыльцы. Следовательно, фертильную пыльцу могут иметь растения и cyt N rfrf, и cyt N Rf–, и cyt S Rf–, а полностью стерильную – только растения cyt S rfrf. Многократное повторение скрещивания ♀ cyt S rfrf × ♂ cyt N rfrf всегда дает потомство с полностью стерильной пыльцой. И только в случае скрещивания cyt S rfrf × cyt S RfRf (или cyt N RfRf) может быть получено потомство, где все растения будут иметь нормальную пыльцу, несмотря на наличие цитоплазмы cyt S . Следует еще раз подчеркнуть, что ген Rf не изменяет структуру и специфичность цитоплазмы cyt S , а лишь тормозит проявление ее действия.

Взаимодействие ядерных и цитоплазматических наследственных факторов, определяющих ЦМС, можно записать следующим образом:

Примечания .

1. Факторы ЦМС локализованы на мтДНК. Аллель цитоплазматической мужской фертильности cyt N – это определенный участок мтДНК длиной 10 тпн. При делеции этого участка возникает аллель цитоплазматической мужской стерильности cyt S

2. Явление ЦМС широко используется для получения гибридных семян у пасленовых, тыквенных культурных растений, так как в этом случае для получения F 1 не требуется производить трудоемкие операции кастрации и изоляции материнских цветков.

3. ЦМС используется для обеспечения генетической безопасности генно-модифицированных культур: пыльца таких линий ГМО стерильна.

Существуют 2 типа мужской стерильности(нежизнеспособности пыльцы):

· Генная мужская стерильность, или ядерная(определяется ядерными генами). Обусловлена генами ядра и наследуется в соответствии с законами Мнеделя.

· Цитоплазматическая мужская стерильность (определяется мутациями мтДНК). Обусловлена взаимодействием ядерных генов и плазмогенов, она передается только по материнской линии

Мужская стерильность впервые обнаружена в 1904г. Корренсом у огородного растения летний чабер. К настоящему времени ЦМС установлена более чем у 300 видов. У большинства из них получена экспериментально путем межвидовой и межродовой гибридизации. К растениям с ЦМС гибридного происхождения относятся лен, табак, пшеница, рис, хлопчатник, картофель, томат, ячмень и др.

Случаи спонтанной ЦМС зарегистрированы у 21 вида,из которы 19 являются перекресниками и только 2(кормовые бобы и ячмень) – самоопылителями. У кормовых бобовых и ячменя формы с ЦМС выявлены в посевах образцов, характеризующихся открытым типом цветения. К растениям со спонтанной ЦМС относятся кукуруза, сах.свекла, оук, морковь, сорго, просо, рожь, подсолнечник и др

Кукуруза – одно из первых растений, у которого была открыта цитоплазматическая мужская стерильность. У этой культуры различают 3 типа стерильности: молдавский, техасский и бразильский. ЦМС определяется особенностями цитоплазмы, вызванными мутациями некоторых митохондриальных генов. ЦМС связана с мутациями мтДНК.

У кукурузы с ЦМС техасского типа выявлен митохондриальный ген T –urf 13, детерминирующий образование белка 13 кД. Ген, кодирующий этот белок, образуется из генных фрагментов исходного кодирующих РНК рибосом.

У риса с ЦМС типа ЦМС –bo (Chinsurah boro ǀǀ) показано наличие в мтДНК дополнительной модифицированоой копии гена atp6:β –atp6,а у фасоли (виды Phaseolus vulgaris и Phaseolus coccineus) область мтДНК, вызывающая ЦМС, состоит из двух генов: orf98 и orf239. Продукт гена orf239 обнаруживается только в генеративных тканях.

У редиса с ЦМС на5 / –конце установлен ген orf105, который нарушает структуру рамки считывания гена atp6 и вызывает ЦМС.

Цитоплазму у стерильных растений обозначают цит S , а у нормальных с фертильной пыльцой– цит N . Стерильная цитоплазма проявляет свое действие только в сочетании с рецессивными генами хромосом в гомозиготном состоянии. Если ген нах –ся в доминантном состоянии(Rf), то специфичность стерильной цитоплазмы не проявляется, и растение формирует фертильную пыльцу. Генетическая структура растений с молдавским типом стерильности, где признак обусловлен цитоплазмой и парой генов,следующая:

1. Цит S rfrf стерильная пыльца

2. Цит S RfRf фертильная пыльца

3. Цит S Rfrf фертильная пыльца

4. Цит N rfrf фертильная пыльца

5. Цит s Rfrf фертильная пыльца

6. Цит S RfRf фертильная пыльца

Открытие ЦМС дало возможность использовать явление гетерозиса в производстве таких культур, как сорго, лук, томат, подсолнечник, рис и др., у которых ручная кастрация цветков, обязательна для получения гибридов, практически невозможна

Техасский тип стерильности оказался сцепленным с неустойчивостью у гельминтоспориозу. Семеноводство гибридов кукурузы в наст.время ведется на молдавском и бразильском типах цитоплазмы, но не на техасском.

45. Гетерозис. Определение, открытие и основные его закономерности. Типы гетерозиса по Густафсону.

Гетерозис (от греч. –изменение, превращение) – явление превосходства по различным признакам гибридов первого поколения над родительскими формами(термин гетерозис предложен Шеллом в 1914г.)

Для растений (по Густафсону) различают три типа гетерозиса:

· Соматический

· Репродуктивный

· Адаптивный

При соматическом гетерозисе первое гибридное поколение превосходит родительские формы по массе растений. Репродуктивный гетерозис определяет превосходство F 1 по семенной продуктивности. И адаптивный гетерозис проявляется в повышенной устойчивости гибридов к неблагоприятным факторам внешней среды.

Впервые явление гетерозиса было описано Кельрейтером(1761 –1766),который изучал гибриды табака. Он сделал три интересных вывода, которые впоследствии были подтверждены:

· Величина гетерозиса зависит от степени различия родительстких форм

· Гибридная сила (гетерозис) имеет особое значение в эволюции

· С практической точки зрения гибридная мощность представляет большую ценность для лесоводов

Дарвин в свое работе «действие перекрестного опыления и самоопыления в растительном мире»показал преимущество гибридов над негибридами, в частности у кукурузы. До сих пор не создана генетическая теория гетерозиса,т.к. многие механизмы в проявлении гетерозиса неясны.

46. Гипотеза сверхдоминирования, объясняющая явление гетерозиса (или моногибридный гетерозис).

Эту гипотезу, независимо друг от друга, сформулировали Шелл и Ист в 1908 г. Сущность ее заключается в том что гетерозис являет собой эффект взаимодействия гетерозиготной пары генов.

Гипотезу сверх доминирования отличают от первой два положения:

· Активны оба аллеля;

· Невозможно закрепить (даже теоретически)гетерозис, т.е.получить гомозиготу, равную по эффекту гетерозиготе со сверхдоминантностью.

Определенным подтверждением этой гипотезы явилось открытие так называемого моногенного гетерозиса. Представление об этом типе гетерозиса дают следующие примеры.

Дополнительное действие аллелей. У кукурузы, как показал Стадлер (1942), имеются множественные аллели R? Детерминирующие пигментацию различных частей растения. Гетерозиготное по этим аллелям растение всегда более пигментировано, чем гомозиготное:

R g R g – алейрон окрашен,пыльники не окрашены

R r r r – алейрон не окрашен,пыльники окрашены

R g r r – алейрон окрашен,пыльники окрашены.

Альтернативные пути синтеза. Предположим, что аллель G 1 определяетвыработку красного пигмента при t=27, а аллель G 2 – при t=10 0 С. В этом случае при отсутствии доминантности генотип G 1 G 2 может синтезировать красный пигмент как при высокой, так при низкой температуре.

Синтез оптимального количества определенного вещества. В опытах с проростками у ячменя было показано, что доминантные и рецессивные гомозиготные генотипы по гену К (КК и кк) фиксируют диоксид углерода с приблизительно одинаковой скоростью, а у гетерозиготного генотипа (Кк) фотосинтез увеличивался на ≈50%

В целом обе эти гипотезы объясняют одинаковый конечный результат и поэтому не могут считаться взаимоисключающими.

47. Гипотеза доминирования, объясняющая явление гетерозиса. Пути закрепления гетерозиса.

Эта гипотеза имеет более полное название – гипотеза взаимодействия благоприятных доминантных факторов. Она объясняет гетерозис сочетанием в результате скрещивания благоприятно действующих доминантных генов и подавлением ими вредных рецессивных аллелей. Разработана американским генетиком Джонсоном (1917).

Проявление гетерозиса при скрещивании инбредных линий, согласно этой гипотезе, есть результат подавления действия вредных рецессивных генов их благоприятными доминантными аллелями, т.к. маловероятно, чтобы у разных линий все рецессивные гены находились в одинаковых локусах.

«вклад доминантных и рецессивных генотипов в развитие количественного признака»

P: ааBBccDDee × AabbCCddEE

1+2+1+2+1 = 7 2+1+2+1+2 = 8

Считается также, что на эффект гетерозиса оказывает влияние и степень взаимодействия между доминантными генами (эпистаз* –взаимодействие генов, влияющих на выраженность признака)

Вообще принято рассматривать по этой гипотезе гетерозис как любое превышение показателей у гибридов над средней точкой между его родителями.

Исходя из теории доминирования, гетерозис в целом следует рассматривать как суммирование значений d по каждому из генов,внося вклад в развитие признака у F 1: Гетерозис = Σd

Эта формула должна быть видоизменена, если родительские формы не полностью гомозиготны по каждому из полигенов.

В этом случае она приобретает вид:

Гетерозис в F 1 =Σ dy 2 , где у – множитель,представляющий разность в частоте генов между двумя скрещивающимися формами (у=1 или 100%, когда родитель гомозиготен по разным аллелям в каждом локусе).

Поскольку гетерозиготность в F 2 уменьшается в 2 раза, и гетерозис во втором поколении снижается в 2 раза: Гетерозис в F 2 =Σ dy 2 /2

У многих растений, диких и культурных, встречаются формы, не образующие пыльцы или образующие пыльцу, не способную к оплодотворению. Это явление называется мужской стерильностью. Оно может определяться одним рецессивным геном в хромосоме. Известны формы мужской стерильности, наследуемые по материнскому типу и получившие название цитоплазматической мужской стерильности (ЦМС). Материнское наследование стерильности пыльцы впервые было обнаружено в 1930-х гг. у кукурузы М. Родсом в США и М.И. Ханджиновым в СССР.

При опылении кукурузы с мужской стерильностью пыльцой нормальных растений получалось потомство со стерильной пыльцой. При повторных возвратных скрещиваниях с растениями, имеющими нормальную пыльцу, вновь возникало потомство с мужской стерильностью, даже если все хромосомы материнской линии замещали на хромосомы отцовской, нормальной линии. Таким образом, наследование по материнскому типу и непричастность к этому процессу хромосом позволили локализовать в цитоплазме детерминант, определяющий мужскую стерильность у кукурузы.

Благодаря тому что у кукурузы в основной массе стерильной пыльцы встречаются редкие пыльцевые зерна, способные к нормальному опылению, оказалось возможным реципрокное скрещивание. В первом же гибридном поколении были получены полностью фертильные растения (рис. 8.3).

У кукурузы известно несколько типов цитоплазматической мужской стерильности, например техасский (Г), при котором полностью стерильные пыльники не выступают наружу, и молдавский, ши USDA (5), при котором часть или все пыльники выступают наружу. Эти два типа стерильности различаются также по характеру взаимодействия с генами - восстановителями фертильности. В частности, фертильность у растений с цитоплазмой техасского типа восстанавливают два гена в хромосоме II и ряд генов в хромосомах III, IV, VII и X.

Если обозначить цитоплазматический фактор стерильности как Суг" и нормальную цитоплазму как СуР, а доминантную ядерную аллель - восстановитель фертильности - как /?/(рецессив - rf), то признак цитоплазматической мужской стерильности разовьется только у растений rfrfCyf, в то время как RfRfCy ?, RfrfCyf, RfRfCyf, RfrfCyt 4 , rfrfCyf будут фертильными.

Это явление - восстановление фертильности пыльцы - широко используется на практике для получения гетерозисных двойных межлинейных гибридов кукурузы (рис. 8.4). Для этого рядом высевают по две линии кукурузы со стерильной и фертильной пыльцой. Это обеспечивает только перекрестное опыление, что очень существенно, поскольку кукуруза само- совместима при опылении. Линии по генам Rf подбирают таким образом, что при одном скрещивании гибриды имеют стерильную, а при другом - фертильную пыльцу. При высеве этих гибридов на следующий год таким же образом получают двойные гибриды. При этом в половине случаев опыление дает фертильные по пыльце растения, как и следует при анализирующем скрещивании (рис. 8.4).

Рис. 8.3.

Рис. 8.4.

Этот прием экономически очень выгоден, поскольку позволяет избежать кастрации - обламывания метелок у кукурузы, что требует больших затрат труда. Широкое распространение техасского типа стерильности имело и негативные последствия, поскольку растения с такой цитоплазмой оказались восприимчивыми к грибковым заболеваниям - гельминтоспо- риозу листьев, возбудителем которого является плесневый гриб НеЪгптШропит таусНь, уничтоживший в 1970 г. более половины урожая кукурузы в южных районах США. Токсин, выделяемый этим плесневым грибом, разрушает внутренние мембраны митохондрий у линий кукурузы с техасским типом мужской стерильности. Это заставило искать другие типы ЦМС у кукурузы, чтобы использовать их в селекции вместо техасского типа.

Связь чувствительности к гельминтоспориозу с митохондриями, по- видимому, оказалась неслучайной. Митохондрии, как и хлоропласты, имеют собственную ДНК. В митохондриях Су? отсутствует участок длиной около 10 000 п.н., присутствующий в митохондриях Су? 1 . Этот фрагмент обнаруживает гомологию с ДНК хлоропласта.

  • 6. Клеточный цикл. Митоз как механизм бесполого размножения эукариот.
  • 7. Особенности размножения и передачи генетической информации у бактерий и вирусов. Сексдукция, трансформация, трансдукция.
  • 8. Эукариотические микроорганизмы как объекты генетики, особенности передачи у них генетической информации (тетрадный анализ, конверсия генов, парасексуальный цикл).
  • 10. Эволюция представлений о гене. Ген в классическом понимании. Химическая природа гена. Тонкая структура гена.
  • 11. Экспериментальная расшифровка генетического кода.
  • 12. Генетический код и его основные свойства.
  • 13. Молекулярные механизмы реализации генетической информации. Синтез белка в клетке.
  • 14. Генетические основы онтогенеза, механизмы дифференцировки.
  • 15. Ауксотрофные мутанты и их значение в выяснении цепей биосинтеза. Гипотеза «один ген – один фермент».
  • 16. Особенности наследования при моногибридном скрещивании. Гипотеза чистоты гамет и её цитологические основы.
  • 17. Наследование при полигибридном скрещивании. Закон независимого наследования признаков и его цитологические основы.
  • 18. Взаимодействие аллельных генов. Множественные аллели.
  • 19. Наследование при взаимодействии неаллельных генов.
  • 20 Генетика пола. Механизмы определения пола. Наследование признаков, сцепленных с полом.
  • 21. Сцепление генов и кроссинговер (закон т.Моргана).
  • 22. Цитологическое доказательство кроссинговера.
  • 23. Генетические и цитологические карты хромосом.
  • 24. Нехромосомное наследование и его основные особенности.
  • 25. Наследование в панмиктической популяции. Закон Гарди-Вайнберга.
  • 26. Факторы генетической динамики популяций.
  • 27. Популяция самооплодотворяющихся организмов, её генетическая структура и динамика.
  • 28. Генетические основы эволюции.
  • 29. Изменчивость, её причины и методы изучения.
  • 30. Изменчивость как материал для создания новых пород животных, сортов растений и штаммов микроорганизмов.
  • 31. Модификационная изменчивость и её значение в эволюции и селекции.
  • 33. Спонтанный и индуцированный мутагенез.
  • 34. Генные мутации. Методы учета мутаций.
  • 35 Мутагены, их классификация и характеристика. Генетическая опасность загрязнения природной среды мутагенами.
  • 36. Хромосомные перестройки, их типы и роль в эволюции
  • 37. Особенности мейоза у гетерозигот по различным хромосомным перестройкам.
  • 38. Автополиплоиды и их генетические особенности.
  • 39. Аллополиплоиды и их генетические особенности. Синтез и ресинтез видов.
  • 40. Анеуплоиды, их типы и генетические особенности. Анеуплоидия у человека.
  • Формы анеуплоидии
  • 41. Человек как объект генетики. Методы изучения генетики человека.
  • 43. Хромосомные болезни человека и причины их возникновения. Характеристика основных хромосомных болезней.
  • Болезни, обусловленные нарушением числа аутосом (неполовых) хромосом
  • Болезни, связанные с нарушением числа половых хромосом
  • Болезни, причиной которых является полиплоидия
  • Нарушения структуры хромосом
  • 44. Проблемы медицинской генетики.
  • 45. Роль наследственности и среды в обучении и воспитании.
  • 46. Селекция как наука. Учение об исходном материале.
  • 47. Учение н.И.Вавилова о центрах происхождения культурных растений и закон гомологических рядов. Значение закона гомологических рядов для селекции.
  • 48. Системы скрещиваний в селекции.
  • 50. Гетерозис и гипотезы о его механизме. Использование гетерозиса в селекции.
  • 51. Цитоплазматическая мужская стерильность и её использование в селекции.
  • 52. Генная, клеточная и хромосомная инженерия.
  • Хромосомная инженерия.
  • 49. Методы отбора в селекции. Массовый и индивидуальный отбор. Семейный отбор и метод половинок.
  • 51. Цитоплазматическая мужская стерильность и её использование в селекции.

    Одним из самых ярких примеров цитоплазматической наследственности можно считать цитоплазматическую мужскую стерильность (ЦМС), обнаруженную у многих

    растений - кукурузы, лука, свеклы, льна.

    Явление полной или частичной стерильности андроцеявысших растений, причиной которому является особая мутация вгеномемитохондрий, фертильность растений восстанавливается полностью или частично при наличии доминантного аллеля ядерного гена-восстановителя фертильности. ЦМС проявляется в трех основных формах:

    1) Мужская генеративные органы – тычинки – совершенно не развиваются; подобные явление наблюдается у растений некоторых видов табака;

    2) Пыльники в цветках образуются, но пыльца их нежизнеспособна; эта форма стерильности чаще всего встречается у кукурузы;

    3) В пыльниках образуется нормальная пыльца, но они не растрескиваются и пыльца не попадает на рыльца; это очень редкое явление наблюдается иногда у некоторых сортов томата.

    МС генетически м\обуславливаться генами стерильности ядра и взаимодействием ядерных генов и плазмогенов →различают 2 вида МС: ядерную, или генную, и цитоплазматическую. Ядерная стерильность вызывается мутациями хромосомных генов ms. В связи с тем, что гены стерильности рецессивные, а гены фертильности доминантные, при этом типе наследования стерильности от скрещивания стерильности растений с фертильными все растения F1 бывают фертильными (msms х MsMs Msms) , а в F2 происходит расщепление на фертильные и стерильные формы в отношении 3:1 в последующих поколениях число стерильных растений от такого скрещивания непрерывно уменьшается.

    Рассмотрим ЦМС на примере кукурузы. Кукуруза - однодомное растение, женские цветки которого собраны в початок, а мужские -в метелку. Иногда в метелке м\б недоразвитые пыльники со стерильной пыльцой. Стерильность пыльцы определяется особенностями цитоплазмы. Опыление растений с ЦМС пыльцой, взятой от других растений, дает в потомстве формы также со стерильной пыльцой →признак ЦМС передается по материнской линии. Даже когда все 10 пар хромосом стерильного по пыльце растения замещены хромосомами растений с нормальной пыльцой, МСсохраняется. Цитоплазма, обуславливающая МС →цитS, а N цитоплазма→цитN. Генотип растения также влияет на стерильность пыльцы. ЦитS обусловливает стерильность только при наличии в генотипе рецессивных генов rfrf в гомозиготном состоянии. При цитS RfRf или цитS Rfrf растения имеют N фертильную пыльцу →ген Rf способен восстанавливать фертильность пыльцы. Подобные отношения между цитоплазмой и генотипом позволили разработать методику и составить схему получения межлинейных гибридов кукурузы с использованием ЦМС

    линии: А В С D

    ЦМС фертильная ЦМС фертильная

    («закрепитель») («восстановитель»)

    Р: скрещивание линий:

    цитS rfrf цитN rfrf цитS rfrf цитN RfRf

    F1: (A Х В) X (С Х D)

    ЦМС фертильный («восстановитель»)

    цитS rfrf цитS RfRf

    F2: двойной гибрид: (ахв)х(схD)

    цитS Rfrf фертильный

    У растений с молдавским типом ЦМС метелки образуют пыльники, которые не раскрываются, пыльца в них нежизнеспособная, хотя при определенных условиях может образоваться и жизнеспособная. У растений с техасским типом ЦМС проявление стерильности в меньшей степени подвержено влиянию внешних воздействий, а признак выражен значительно: пыльники сильно дегенерированы и никогда не раскрываются. В селекции используются оба типа ЦМС.

    Кроме того, имеются данные о возможности использования ЦМС и у пшеницы. Получены стерильцые формы от скрещивания двух видов растений - эгилопса и пшеницы, ведутся работы по подбору других компонентов для скрещивания, обеспечивающих максимальный гетерозис.

    Удалось выявить пары скрещиваний» которые дают прибавку урожая на 40-50 %.

    генетический код инбридинг стерильность

    У многих видов растений с обоеполыми цветками и однодомных изредка встречаются единичные особи со стерильными мужскими генеративными органами. Такие факты были известны ещё Ч. Дарвину. Он их рассматривал, как склонность вида переходить от однодомности к двудомности, которую в эволюционном отношении считал более совершенной. Таким образом, формирование особей, имеющих мужскую стерильность, представляет собой естественное явление эволюционного процесса.

    Мужскую стерильность впервые обнаружил К. Корренс в 1904 г. у огородного растения летний чабер. В 1921 г. В. Бэтсон нашёл её у льна, в 1924 г, американский генетик Д. Джонс - у лука, в 1929 г. А.И.Купцов - у подсолнечника.

    В 1932 г. М.И. Хаджисимо от него американский генетик М. Родс обнаружили мужские стерильные растения у кукурузы. В дальнейшем было установлено, что мужская стерильность широко распространение среди цветковых растений. Мутации, вызывающие мужскую стерильность, описаны в настоящее время у большинства культурных растений.

    Мужская стерильность бывает при отсутствии пыльцы или её неспособность к оплодотворению и проявляется в трёх основных формах:

    • 1) Мужские генеративные органы - тычинки - совершенно не развиваются; подобные явление наблюдается у растений некоторых видов табака;
    • 2) Пыльники в цветках образуются, но пыльца их нежизнеспособна; эта форма стерильности чаще всего встречается у кукурузы;
    • 3) В пыльниках образуется нормальная пыльца, но они не растрескиваются и пыльца не попадает на рыльца; это очень редкое явление наблюдается иногда у некоторых сортов томата.

    Мужская стерильность генетически может обуславливаться генами стерильности ядра и взаимодействием ядерных генов и плазмогенов. В соответствии с этим различают два вида мужской стерильности: ядерную, или генную, и цитоплазматическую. Ядерная стерильность вызывается мутациями хромосомных генов ms. В связи с тем, что гены стерильности рецессивные, а гены фертильности доминантные, при этом типе наследования стерильности от скрещивания стерильности растений с фертильными все растения F1 бывают фертильными (msms х MsMs Msms), а в F2 происходит расщепление на фертильные и стерильные формы в отношении 3:1 в последующих поколениях число стерильных растений от такого скрещивания непрерывно уменьшается. В настоящее время разрабатываются приёмы использования генной стерильности для получения гетерозисных гибридов хлопчатника, подсолнечника и некоторых других культур.

    В образце дикой однолетней свёклы обнаружена полная мужская стерильность, обусловленная одним рецессивным геном ms. Методом насыщающих скрещиваний этот ген перенесён в сахарную свёклу. У этой культуры он действует независимо от генов X и Z, восстанавливающих фертильность пыльцы у форм с S-цитоплазмой.

    Для объяснения причин возникновения цитоплазматической стерильности были выдвинуты три гипотезы. Одна из них, известная под названием вирусной, связывает возникновение мужской стерильности с вирусной инфекцией, которая может передаваться при половом размножении через цитоплазму яйцеклетки.

    Вторая гипотеза рассматривает возникновение ЦМС как результат несоответствия цитоплазмы и ядра разных видов при отдалённой гибридизации. Действительно, в ряде случаев, например при скрещивании мягкой пшеницы Triticum aestivum с Tr Aestivum, возникают формы с ЦМС. Однако у многих культур обнаружена ЦМС, не связанная с отдалённой гибридизацией. Поэтому наибольшее признание в настоящее время получила гипотеза, рассматривающая возникновение ЦМС в результате специфических мутаций плазмогенов.

    Можно утверждать, что цитоплазматическая мужская стерильность обусловлена наследственными изменениями (мутациями) цитоплазмы. Она обычно полностью сохраняется в F1 и последующих поколениях у всех растений. При этом типе наследования стерильное растение, например кукуруза, опылённое пыльцой другого сорта или линии, даёт потомство, у которого метёлка остаётся стерильной, а остальные признаки изменяются, как обычно при гибридизации. Признак мужской стерильности сохраняется, даже когда все 10 пар хромосом у кукурузы таких стерильных по пыльце растений замещаются в повторных скрещиваниях хромосомами от растений с нормальной, фертильной пыльцой. Из этого следует, что мужская стерильность устойчиво передаётся из поколения в поколение по материнской линии, а наследственные факторы, её обусловливающие, не находятся в хромосомах ядра.

    Характер наследования ЦМС хорошо изучен в реципрокных скрещиваниях растений с мужской стерильностью, иногда дающих в небольшом количестве фертильную пыльцу, с нормальными фертильными растениями. При опылении растений стерильной линии фертильной пыльцой признак стерильности передаётся гибридам F1 и последующих поколений. Если такое скрещивание продолжается, то происходит постепенное замещение генов стерильной линии генами линии с фертильной пыльцой. Цитоплазма материнской стерильной линии постепенно насыщается ядерным наследственным материалом отцовской фертильной линии.

    С каждым скрещиванием у материнской линии остаётся все меньше и меньше своих наследственных факторов, они заменяются факторами линии, взятой для насыщающего скрещивания. В результате шести-семи возвратных скрещиваний и отбора получаются растения, по всем признакам сходные с отцовской линией, но обладающие мужской стерильностью. Их называют стерильными аналогами фертильных линий, использовавшихся в качестве отцовской формы. При опылении растений фертильных линий пыльцой, которая изредка образуется у растений стерильных линий, гибриды F1 имеют фертильную пыльцу и при дальнейшем размножении дают растения только с фертильной пыльцой. Следовательно, ЦМС не может быть передана через мужское растение, но стойко передаётся из поколения в поколение по материнской линии.

    Результаты рассмотренного скрещивания, казалось бы, не оставляют никаких сомнений в том, что признак ЦМС генетически связан только с внехромосомными факторами. Но дальнейшее изучение наследования ЦМС показало, что не во всех скрещиваниях стерильных растений с фертильными получается потомство со стерильной пыльцой. В некоторых случаях признак стерильности полностью подавляется у гибридов F1 и совершенно не проявляется при дальнейшем их размножении или, начиная с F2, происходит расщепление на фертильные и стерильные по пыльце растения.

    В результате изучения и обобщения экспериментального материала по наследованию мужской стерильности возникло представление о том, что это свойство обусловлено взаимодействием цитоплазмы и генов хромосом, составляющих вместе генетическую систему. Цитоплазма, обусловливающая стерильность пыльцы, получила название ЦИТs (стерильная цитоплазма), а цитоплазма, дающая растения с фертильной пыльцой, -ЦИТn(нормальная цитоплазма). Существует локализованный в хромосомах доминантный ген Rf (от начальных букв restoring fertility- восстанавливающий фертильность), который, не изменяя структуры и специфичности стерильной цитоплазмы, в то же время препятствует её проявлению. Стерильная цитоплазма проявляет своё действие только в сочетании с рецессивными аллеями этого гена. Следовательно, только сочетание ЦИТ srfrf может обусловить развитие стерильной пыльцы. Фертильная пыльца образуется на основе нормальной цитоплазмы в сочетаниях ЦИТn RfRf, ЦИТn Rfrf и ЦИТn rfrfи на основе стерильной цитоплазмы в сочетаниях ЦИТs RfRf и ЦИТs Rfrf. Таким образом, наследование ЦМС по материнской линии возможно только в скрещиваниях растений ЦИТs rfrf x ЦИТn rfrf ЦИТs rfrf (стерильность закрепляется).

    Скрещивание ЦИТs rfrf x ЦИТn (s) RfRf все растения будут фертильными, т. е. происходит полное восстановление фертильности.

    Мы разобрали наиболее простой случай наследования стерильности, связанный с взаимодействием стерильной цитоплазмы и одной аллельной пары генов. В настоящее время изучены более сложные генетические системы ЦМС, связанные в проявлении стерильности пыльцы с двумя и тремя генами. Мужская стерильность у сахарной свёклы обусловлена взаимодействием стерильной цитоплазмы (ЦИТs) с двумя ядерными генами (X и Y) и передаётся в потомстве только по материнской линии. Растение с двумя рецессивными генами и стерильной цитоплазмой имеет генетическую структуру Sxxzz, что даёт полную стерильность пыльцы. Полустерильные типы растений являются гетерозиготными по генам X и Z формами: SXxzz, SXXzz, SxxZz, SxxZZ, SXxZz, SXXZz, SXxZZ, SXXZZ. Популяции фертильных растений (ЦИТn) имеют особи с различной наследственной структурой и в их потомстве могут проявляться те или иные типы стерильности. Опыление пыльцой растений Nxxzz даёт полностью стерильные линии. Если же опылитель является дигетерозиготным по генам X и Y, то в потомстве будут все три типа стерильности: Sxxzz x NXxZz > SXxZz, SXxzz, SxxZz,Sxxzz. На проявление стерильности, кроме генетических факторов, некоторое влияние оказывают внешние условия. Например, мужская стерильность лучше восстанавливается при прохладной погоде, достаточной влажности почвы и воздуха в период цветения растений, при укороченном дне и недостатке азота в почве.

    ЦМС широко используется при создании на стерильной основе гетерозисных гибридов кукурузы и некоторых других культур. ЦМС вызывает у растений кукурузы ряд изменений: уменьшается число листьев (на 3-4%), снижается рост растений (до4-5%), наблюдается небольшая депрессия и по другим признакам. Степень проявления депрессии зависит от генотипа линий: у одних она выражена сильнее, у других слабее. У некоторых линий со стерильной цитоплазмой рост растений даже несколько увеличивается. Депрессия у линий, имеющих ЦМС, частично снимается под действием генов-восстановителей. На продуктивность гибридов стерильность цитоплазмы в среднем отрицательного влияния не оказывает. В неблагоприятные по погодным условиям годы стерильные формы при опылении пыльцой фертильных растений оказываются более продуктивным.

    Непосредственной причиной образования форм с ЦМС некоторые учёные считают нарушение синтеза белка в результате мутации в ядре, приводящей к неправильному микроспорогенезу, другие дегенерацию пыльцевых зёрен связывают с нарушением снабжения питания пыльников стерильных растений.

    При скрещивании специально подобных линий кукурузы можно получать гибриды, которые на 25-30% превышают по урожайности лучшие сорта. Такие линии высевают чередующимися рядами на участках гибридизации. Но для получения гибридных семян необходимо на растениях материнской формы до цветения вручную удалять все метёлки. Эта работа требует больших затрат труда и должна проводится очень тщательно. Поэтому широкое производственное использование гибридов кукурузы длительное время сдерживалось. Открытие и использование ЦМС коренным образом решило проблему производства гибридной кукурузы. Путём возвратных насыщающих скрещиваний получили стерильные аналоги материнских линий, гибриды кукурузы перевели на стерильную основу, и их стали возделывать без затрат ручного труда на обрывание метёлок.

    Широкое использование гибридов у таких культур, как сорго, лук, огурцы, томат, стало возможным только благодаря открытию ЦМС, так как ручная кастрация цветков у них практически невозможна.

    По той же причине нельзя было использовать гетерозис у основной зерновой культуры-пшеницы, хотя при скрещивании специально подобранных сортов он проявляется не менее сильно, чем у кукурузы. Теперь генетики и селекционеры работают над созданием гетерозисных гибридов пшеницы на стерильной основе.

    Поделитесь с друзьями или сохраните для себя:

    Загрузка...