Радиоактивный изотоп тория 232 90. Торий — новая «батарейка» в ядерной энергетике. Отходы после продуктов деления

Что будет, если мы скажем, будто избыток выбросов вредных веществ в результате сгорания бензина или обычного дизеля топлива можно решить, используя атомный двигатель? Впечатлит ли вас это? Если нет, то можно даже не начинать читать этот материал, а вот для тех, кому данная тема интересна, милости просим, потому, как речь у нас пойдет об атомном двигателе для автомобиля, который работает на изотопе тория-232.

Удивительно, но именно торий-232 обладает самым большим периодом полураспада среди изотопов тория и при этом является наиболее распространенным. Поразмыслив над этим фактом, ученые американской компании Laser Power Systems заявили о возможности сконструировать двигатель, который использует торий в качестве топлива и при этом является абсолютно реальным проектом на сегодняшний день.

Уже давно было определено, что торий, в случае использования его как топлива, имеет сильные позиции и при «работе» выделяет колоссальное количество энергии. По подсчетам ученых, всего 8 грамм тория-232 позволят работать двигателю в течение 100 лет, а 1 грамм произведет больше энергии, чем 28 тыс. литров бензина . Согласитесь, подобное не может не впечатлять.

Как сообщает генеральный директор Laser Power Systems Чарльз Стивенс, команда специалистов уже начала эксперименты, используя небольшое количество тория, однако самая ближайшая цель это создание необходимого для технологического процесса лазера. Описывая принцип работы подобного двигателя, можно привести в пример работу классической электростанции. Так, лазер, по планам ученых, будет нагревать емкость с водой, а полученный пар пойдет на работу мини-турбин.


Однако, каким бы прорывным не казалось заявление специалистов LPS , сама идея использовать атомный ториевый двигатель не нова. В 2009 году, Лорен Кулеусус показал мировому сообществу свое видение будущего и продемонстрировал концепт-кар Cadillac World Thorium Fuel Concept Car. И, несмотря на его футуристический внешний вид, главным отличием концепт-кара было наличие источника энергии для автономной работы, который использовал в качестве топлива торий.

«Учёными должен быть найден более дешёвый источник энергии в сравнении с углём, обладающий низким значением выброса диоксида углерода при сгорании или его отсутствием. В противном случае данная идея вовсе не сможет получить своего развития» - Роберт Харгрейв, специалист в области изучения свойств тория


На данный момент специалисты Laser Power Systems полностью сосредоточили свои силы на создании серийного образца двигателя для массового производства. Впрочем, не исчезает один из самых важных вопросов, как отреагируют на подобное новшество страны и компании, лоббирующие «нефтяные» интересы. Ответ подскажет только время.

Интересное:

  • Природные запасы тория превышают запасы урана в 3-4 раза
  • Специалисты называют торий и в частности торий -232 «ядерным топливом будущего»
Изотопная распространённость 100 % Период полураспада 1,405(6)·10 10 лет Продукты распада 228 Ra Родительские изотопы 232 Ac (β −)
232 Pa (β +)
236 U () Спин и чётность ядра 0 + Канал распада Энергия распада α-распад 4,0816(14) МэВ 24 Ne, 26 Ne ββ 0,8376(22) МэВ

Вместе с другими природными изотопами тория , торий-232 появляется в ничтожных количествах в результате распада изотопов урана .

Образование и распад

Торий-232 образуется в результате следующих распадов:

\mathrm{^{232}_{\ 89}Ac} \rightarrow \mathrm{^{232}_{\ 90}Th} + e^- + \bar{\nu}_e; \mathrm{^{232}_{\ 91}Pa} + e^- \rightarrow \mathrm{^{232}_{\ 90}Th} + \bar{\nu}_e; \mathrm{^{236}_{\ 92}U} \rightarrow \mathrm{^{232}_{\ 90}Th} + \mathrm{^{4}_{2}He}.

Распад тория-232 происходит по следующим направлениям:

\mathrm{^{232}_{\ 90}Th} \rightarrow \mathrm{^{228}_{\ 88}Ra} + \mathrm{^{4}_{2}He};

энергия испускаемых α-частиц 3 947,2 кэВ (в 21,7 % случаев) и 4 012,3 кэВ (в 78,2 % случаев) .

\mathrm{^{232}_{\ 90}Th} \rightarrow \mathrm{^{208}_{\ 80}Hg} + \mathrm{^{24}_{10}Ne}; \mathrm{^{232}_{\ 90}Th} \rightarrow \mathrm{^{206}_{\ 80}Hg} + \mathrm{^{26}_{10}Ne}; \mathrm{^{232}_{\ 90}Th} \rightarrow \mathrm{^{232}_{\ 92}U} + 2e^- + 2 \bar{\nu}_e.

Применение

\mathrm{^{1}_{0}n} + \mathrm{^{232}_{\ 90}Th} \rightarrow \mathrm{^{233}_{\ 90}Th} \xrightarrow{\beta^-\ 1,243\ MeV} \mathrm{^{233}_{\ 91}Pa} \xrightarrow{\beta^-\ 0,5701\ MeV} \mathrm{^{233}_{\ 92}U}.

См. также

Напишите отзыв о статье "Торий-232"

Примечания

  1. G. Audi, A.H. Wapstra, and C. Thibault (2003). «». Nuclear Physics A 729 : 337-676. DOI :10.1016/j.nuclphysa.2003.11.003 . Bibcode : .
  2. G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra (2003). «». Nuclear Physics A 729 : 3–128. DOI :10.1016/j.nuclphysa.2003.11.001 . Bibcode : .
  3. Rutherford Appleton Laboratory . . . (англ.) (Проверено 4 марта 2010)
  4. World Nuclear Association . . . (англ.) (Проверено 4 марта 2010)
  5. (2004) «». Nature 17 : 117–120. (англ.) (Проверено 4 марта 2010)
Легче:
торий-231
Торий-232 является
изотопом тория
Тяжелее:
торий-233
Изотопы элементов · Таблица нуклидов

Отрывок, характеризующий Торий-232

– Это Машины божьи люди, – сказал князь Андрей. – Они приняли нас за отца. А это единственно, в чем она не повинуется ему: он велит гонять этих странников, а она принимает их.
– Да что такое божьи люди? – спросил Пьер.
Князь Андрей не успел отвечать ему. Слуги вышли навстречу, и он расспрашивал о том, где был старый князь и скоро ли ждут его.
Старый князь был еще в городе, и его ждали каждую минуту.
Князь Андрей провел Пьера на свою половину, всегда в полной исправности ожидавшую его в доме его отца, и сам пошел в детскую.
– Пойдем к сестре, – сказал князь Андрей, возвратившись к Пьеру; – я еще не видал ее, она теперь прячется и сидит с своими божьими людьми. Поделом ей, она сконфузится, а ты увидишь божьих людей. C"est curieux, ma parole. [Это любопытно, честное слово.]
– Qu"est ce que c"est que [Что такое] божьи люди? – спросил Пьер
– А вот увидишь.
Княжна Марья действительно сконфузилась и покраснела пятнами, когда вошли к ней. В ее уютной комнате с лампадами перед киотами, на диване, за самоваром сидел рядом с ней молодой мальчик с длинным носом и длинными волосами, и в монашеской рясе.
На кресле, подле, сидела сморщенная, худая старушка с кротким выражением детского лица.
– Andre, pourquoi ne pas m"avoir prevenu? [Андрей, почему не предупредили меня?] – сказала она с кротким упреком, становясь перед своими странниками, как наседка перед цыплятами.
– Charmee de vous voir. Je suis tres contente de vous voir, [Очень рада вас видеть. Я так довольна, что вижу вас,] – сказала она Пьеру, в то время, как он целовал ее руку. Она знала его ребенком, и теперь дружба его с Андреем, его несчастие с женой, а главное, его доброе, простое лицо расположили ее к нему. Она смотрела на него своими прекрасными, лучистыми глазами и, казалось, говорила: «я вас очень люблю, но пожалуйста не смейтесь над моими ». Обменявшись первыми фразами приветствия, они сели.
– А, и Иванушка тут, – сказал князь Андрей, указывая улыбкой на молодого странника.
– Andre! – умоляюще сказала княжна Марья.
– Il faut que vous sachiez que c"est une femme, [Знай, что это женщина,] – сказал Андрей Пьеру.
– Andre, au nom de Dieu! [Андрей, ради Бога!] – повторила княжна Марья.
Видно было, что насмешливое отношение князя Андрея к странникам и бесполезное заступничество за них княжны Марьи были привычные, установившиеся между ними отношения.
– Mais, ma bonne amie, – сказал князь Андрей, – vous devriez au contraire m"etre reconaissante de ce que j"explique a Pierre votre intimite avec ce jeune homme… [Но, мой друг, ты должна бы быть мне благодарна, что я объясняю Пьеру твою близость к этому молодому человеку.]
– Vraiment? [Правда?] – сказал Пьер любопытно и серьезно (за что особенно ему благодарна была княжна Марья) вглядываясь через очки в лицо Иванушки, который, поняв, что речь шла о нем, хитрыми глазами оглядывал всех.
Княжна Марья совершенно напрасно смутилась за своих. Они нисколько не робели. Старушка, опустив глаза, но искоса поглядывая на вошедших, опрокинув чашку вверх дном на блюдечко и положив подле обкусанный кусочек сахара, спокойно и неподвижно сидела на своем кресле, ожидая, чтобы ей предложили еще чаю. Иванушка, попивая из блюдечка, исподлобья лукавыми, женскими глазами смотрел на молодых людей.
– Где, в Киеве была? – спросил старуху князь Андрей.
– Была, отец, – отвечала словоохотливо старуха, – на самое Рожество удостоилась у угодников сообщиться святых, небесных тайн. А теперь из Колязина, отец, благодать великая открылась…
– Что ж, Иванушка с тобой?
– Я сам по себе иду, кормилец, – стараясь говорить басом, сказал Иванушка. – Только в Юхнове с Пелагеюшкой сошлись…
Пелагеюшка перебила своего товарища; ей видно хотелось рассказать то, что она видела.
– В Колязине, отец, великая благодать открылась.
– Что ж, мощи новые? – спросил князь Андрей.
– Полно, Андрей, – сказала княжна Марья. – Не рассказывай, Пелагеюшка.
– Ни… что ты, мать, отчего не рассказывать? Я его люблю. Он добрый, Богом взысканный, он мне, благодетель, рублей дал, я помню. Как была я в Киеве и говорит мне Кирюша юродивый – истинно Божий человек, зиму и лето босой ходит. Что ходишь, говорит, не по своему месту, в Колязин иди, там икона чудотворная, матушка пресвятая Богородица открылась. Я с тех слов простилась с угодниками и пошла…
Все молчали, одна странница говорила мерным голосом, втягивая в себя воздух.
– Пришла, отец мой, мне народ и говорит: благодать великая открылась, у матушки пресвятой Богородицы миро из щечки каплет…
– Ну хорошо, хорошо, после расскажешь, – краснея сказала княжна Марья.
– Позвольте у нее спросить, – сказал Пьер. – Ты сама видела? – спросил он.

1 грамм на 28 000 литров . Таково соотношения расхода топлива в автомобильных двигателях, если заменить привычное горючее торием.

Речь о 232-ом изотопе . У него самый длинный период полураспада. 8 граммов тория хватит, чтобы двигатель беспрерывно работал в течение 100 лет.

Запасов нового топлива в 3 раза больше, чем в земной коре. Специалисты Laser Power Systems уже приступили к разработке нового двигателя.

Компания американская. Работа двигателя будет напоминать цикл стандартной электростанции. Загвоздкой стала разработка подходящего лазера.

Его задача – нагревать воду, пар которой запускает мини-турбины. Пока ученые отрабатывают процесс, узнаем побольше о топливе 21-го века, а в перспективе и всего тысячелетия.

Что такое торий?

Металл торий относится к актиноидам. В это семейство входят радиоактивные . Все они располагаются в 3-ей группе 7-го периода таблицы .

Номера актиноидов – от 90-го до 103-го. Торий стоит первым. Его и открыли первым, одновременно с ураном.

В чистом виде героя выделил в 1882-ом году Ларс Нильсон. Радиоактивность элемента обнаружили не сразу.

Поэтому, торий долго не вызывал интереса общественности. Распад тория доказан лишь в 1907-ом году.

С 1907-го года изотопы тория открывались один за другим. К 2017-му насчитывается 30 модификаций металла. 9 из них получены .

Наиболее устойчива 232-я. Полураспад тория в таком виде длится 1,4*10 10 лет. Именно поэтому 232-ой изотоп повсеместно распространен, в земной коре занимает долю 8*10 -4 %.

Остальные изотопы хранятся несколько лет, а посему не представляют практического интереса и редко встречаются в природе. Правда 229-ый торий распадается за 7 340 лет. Но, этот изотоп «выведен» искусственно.

Полностью устойчивых изотопов у тория нет. В чистом виде элемент выглядит как —, пластичный .

Именно он делает столь мягким минерал торит. легко режется . Минерал изучал Йенс Берценлиус.

Шведский химик смог вычислить в составе камня неизвестный , но не смог выделить его, отдав лавры Нильсону.

Свойства тория

Торий – элемент , удельная радиоактивность которого равна 0,109 микрокюри на грамм. У 238-го урана, к примеру, показатель почти в 3 раза больше.

Соответственно, торий слаборадиоактивен. Несколько изотопов тория, кстати, являются следствием распада урана. Речь о 230-ом, 231-ом, 234-ом и 235-ом модификациях 90-го элемента.

Распад героя статьи сопровождается выделением радона. Этот газ, так же, именуют тороном. Однако, второе название не общеупотребительное.

Радон опасен при вдыхании. Однако, микродозы содержатся в минеральных водах и влияют на организм благостно.

Принципиален именно путь попадания торона в организм. Выпить можно, впитать – да, но не вдыхать.

В плане кристаллической решетки радиоактивный торий предстает всего в двух ипостасях. До 1 400-от градусов строение металла гранецентрическое.

Оно основано на объемных кубах, состоящих из 14-ти атомов. Часть из них стоят в углах фигуры. Остальные атомы располагаются посередине каждого .

При нагреве свыше 1 400-от градусов Цельсия кристаллическая решетка тория становится объемноцентрированной.

«Упаковка» таких кубов менее плотная. И без того мягковатый торий становится еще более рыхлым.

Торий – химический элемент, отнесенный к парамагнетикам. Соответственно, магнитная проницаемость металла минимальна, близка к единице.

Отличают вещества группы, так же, способность намагничиваться в направлении внешнего поля.

Мольная теплоемкость тория составляет 27,3 килоджоулей. Показатель указывает на тепловую вместимость одного моля вещества, отсюда и название.

Продолжать список сложно, поскольку основная масса свойств 90-го металла зависит от степени его загрязнения.

Так, предел прочности элемента варьируется от 150-ти до 290-та меганьютонов на квадратный метр.

Нестабильна и тория. По металлу дают от 450-ти до 700-от килограмм-силы.

Стоя в начале своей группы, торий перенял часть свойств от предшествующих ей элементов. Так, для героя статьи характерна 4-я степень окисления.

Чтобы торий быстро окислился на воздухе, нужно довести температуру до 400-от градусов. Металл моментально покроется пленкой оксида.

Дуэт тория с кислородом, кстати, самый тугоплавкий из земных оксидов, размягчается лишь при 3 200-от градуса Цельсия.

При этом, соединение еще и химически устойчиво. Чистый же металл вступает в реакцию с .

Любой радиоактивный изотоп тория взаимодействует с ним даже при комнатной температуре.

Остальные реакции с героем статьи проходят при повышенных температурах. При 200-от градусах идет реакция с .

Образуются гидриды порошкообразной формы. Нитриды получаются, если торий нагреть в атмосфере .

Потребуется температура в 800-от градусов Цельсия. Но, для начала нужно добыть реактив. Узнаем, как это делают.

Добыча и месторождения тория

350 000 000 долларов. Примерно такую сумму ежегодно выделяют в на развитие ториевой энергетики. В стране масса месторождений 232-го изотопа.

Это настораживает , которая рискует потерять лидерство на топливном , если основным энергоресурсом в мире станет 90-ый элемент.

Запасы в отечестве есть. Миллионы тонн металла, к примеру, расположились под Новокузнецком.

Однако, нужно отстоять приоритетное право на применение ториевых , а за них в мире ведется борьба. Все понимают, за чем будущее.

Обычно, торий находят в виде , блестящего песка. Это минерал монацит. Пляжи из него часто входят в курортные зоны.

На побережье Азовского моря, к примеру, стоит задуматься не только о солнечной радиации, но и той, что исходит от земли. Жильный торий встречается только в ЮАР. Рудные залежи там зовутся Стинкасмкрааль.

Если добывать торий из руд, то проще получать элемент попутно с . Осталось выяснить, где торий может пригодиться, не считая автомобильных двигателей будущего.

Применение тория

Поскольку ядро тория неустойчиво, естественно применение элемента в атомной энергетике. Для ее нужд закупают , фторид и оксид тория.

Помните температуру, которую выдерживает окись 90-го металла? Только такое соединение и сдюжит в жидкосолевых реакторах.

Окись тория пригождается и в авиационной промышленности. Там 90-ый металл служит упрочнителем. Служба торию находится и в организме .

Ежедневно с пищей поступает около 3 миллиграммов радиоактивного элемента. Он участвует в регулировке процессов системы, усваивается, в основном, печенью.

Закупают торий, так же, металлурги, но не для еды. Чистый металл используют в качестве , то есть добавки, улучшающей качество , в частности, магниевых. С лигатурой они становятся жаропрочными и лучше сопротивляются разрыву.

Напоследок дополним информацию о новом автомобильном двигателе. Торий в нем – не ядерное топливо, а лишь сырье для него.

Сам по себе 90-ый элемент не способен давать энергию. Все меняют нейтронная среда и водный реактор.

С ними торий преобразуется в 233-ий уран. Вот он – эффективное топливо. Почем платят за сырье для него? Попробуем узнать.

Цена тория

Цена тория разнится на чистый металл и его соединения. Это общая фраза из . Из частностей — лишь ценник за кило оксида тория примерно в 7 500 .

На этом открытые запросы заканчиваются. Продавцы просят уточнять стоимость, поскольку реализуют радиоактивный элемент.

Предложений чистого тория в интернете нет, как нет и данных о за грамм металла. Меж тем, заинтересованным новым видом автомобильного топлива вопрос не дает покоя, как не дает покоя и то, не подскочат ли запросы за 90-ый элемент в случае его повсеместного использования.

Изначально, ради вытеснения с рынка бензиновых двигателей, торий сделают максимально выгодным. Но, что будет потом, когда возврат к былому будет уже маловероятен?

Вопросов много. Конкретики мало, впрочем, как и во всем новом, неизведанном, кажущемся на первых парах авантюрой.

Хотя, первые варианты ториевого двигателя уже готовы. Весят они около 200-от килограммов. Такой аппарат легко поместить под капот средних размеров.

В 1815 году знаменитый шведский химик Йенс Якоб Берцелиус заявил об открытии нового элемента, который он назвал торием в честь Тора, бога-громовержца и сына верховного скандинавского бога Одина. Однако в 1825 году обнаружилось, что открытие это было ошибкой. Тем не менее название пригодилось — его Берцелиус дал новому элементу, который он обнаружил в 1828 году в одном из норвежских минералов (сейчас этот минерал называется торит). Этому элементу, возможно, предстоит большое будущее, где он сможет сыграть в атомной энергетике роль, не уступающую по важности главному ядерному топливу — урану.

Плюсы и минусы
+ Тория на Земле в несколько раз больше, чем урана
+ Не нужно разделять изотопы
+ Радиоактивное заражение при добыче тория существенно меньше (за счет более короткоживущего радона)
+ Можно использовать уже существующие тепловые реакторы
+ Торий имеет лучшие термомеханические свойства, чем уран
+ Торий менее токсичен, чем уран
+ При использовании тория не образуются минорные актиниды (долгоживущие радиоактивные изотопы)
- В процессе облучения тория образуются гамма-излучающие изотопы, что создает трудности при переработке топлива

Дальние родственники бомбы

Атомная энергетика, на которую сейчас возлагается столько надежд, — это побочная ветвь военных программ, основными целями которых было создание атомного оружия (а чуть позднее реакторов для подводных лодок). В качестве ядерного материала для изготовления бомб можно было выбрать из трех возможных вариантов: уран-235, плутоний-239 или уран-233.

Так выглядит ториевый ядерный цикл, иллюстрирующий превращение тория в высокоэффективное ядерное топливо — уран-233.

Уран-235 содержится в природном уране в очень небольшом количестве — всего 0,7% (остальные 99,3% составляет изотоп 238), и его нужно выделить, а это дорогостоящий и сложный процесс. Плутоний-239 не существует в природе, его нужно нарабатывать, облучая нейтронами уран-238 в реакторе, а затем выделяя его из облученного урана. Таким же образом можно получать уран-233 путем облучения нейтронами тория-232.


В 1960-х планировалось замкнуть ядерный цикл по урану и плутонию с использованием примерно 50% АЭС на тепловых реакторах и 50% на быстрых. Но разработка быстрых реакторов вызвала трудности, так что в настоящее время эксплуатируется лишь один такой реактор — БН-600 на Белоярской АЭС (и построен еще один — БН-800). Поэтому сбалансированную систему можно создать из ториевых тепловых реакторов и примерно 10% быстрых реакторов, которые будут восполнять недостающее топливо для тепловых.

Первые два способа в 1940-х годах были реализованы, а вот с третьим физики решили не возиться. Дело в том, что в процессе облучения тория-232 помимо полезного урана-233 образуется еще и вредная примесь — уран-232 с периодом полураспада в 74 года, цепочка распадов которого приводит к появлению таллия-208. Этот изотоп излучает высокоэнергетичные (жесткие) гамма-кванты, для защиты от которых требуются толстенные свинцовые плиты. Кроме того, жесткое гамма-излучение выводит из строя управляющие электронные цепи, без которых невозможно обойтись в конструкции оружия.

Ториевый цикл

Тем не менее о тории не совсем забыли. Еще в 1940-х годах Энрико Ферми предложил нарабатывать плутоний в реакторах на быстрых нейтронах (это более эффективно, чем на тепловых), что привело к созданию реакторов EBR-1 и EBR-2. В этих реакторах уран-235 или плутоний-239 являются источником нейтронов, превращающих уран-238 в плутоний-239. При этом плутония может образовываться больше, чем «сжигается» (в 1,3−1,4 раза), поэтому такие реакторы называются «размножителями».


Другая научная группа под руководством Юджина Вигнера предложила свой проект реактора-размножителя, но не на быстрых, а на тепловых нейтронах, с торием-232 в качестве облучаемого материала. Коэффициент воспроизводства при этом уменьшился, но конструкция была более безопасной. Однако существовала одна проблема. Ториевый топливный цикл выглядит таким образом. Поглощая нейтрон, торий-232 переходит в торий-233, который быстро превращается в протактиний-233, а он уже самопроизвольно распадается на уран-233 с периодом полураспада 27 дней. И вот в течение этого месяца протактиний будет поглощать нейтроны, мешая процессу наработки. Для решения этой проблемы хорошо бы вывести протактиний из реактора, но как это сделать? Ведь постоянная загрузка и выгрузка топлива сводит эффективность наработки почти к нулю. Вигнер предложил очень остроумное решение — реактор с жидким топливом в виде водного раствора солей урана. В 1952 году в Национальной лаборатории в Оак-Ридже под руководством ученика Вигнера, Элвина Вайнберга, был построен прототип такого реактора — Homogeneous Reactor Experiment (HRE-1). А вскоре появилась еще более интересная концепция, идеально подходившая для работы с торием: это реактор на расплавах солей, Molten-Salt Reactor Experiment. Топливо в виде фторида урана было растворено в расплаве фторидов лития, бериллия и циркония. MSRE проработал с 1965 по 1969 год, и хотя торий там не использовался, сама концепция оказалась вполне работоспособной: использование жидкого топлива повышает эффективность наработки и позволяет выводить из активной зоны вредные продукты распада.


Жидкосолевой реактор позволяет намного более гибко управлять топливным циклом, чем обычные тепловые станции, и использовать топливо с наибольшей эффективностью, выводя вредные продукты распада из активной зоны и добавляя новое топливо по мере необходимости.

Путь наименьшего сопротивления

Тем не менее жидкосолевые реакторы (ЖСР) не получили распространения, поскольку обычные тепловые реакторы на уране оказались дешевле. Мировая атомная энергетика пошла по наиболее простому и дешевому пути, взяв за основу проверенные водо-водяные реакторы под давлением (ВВЭР), потомки тех, которые были сконструированы для подводных лодок, а также кипящие водо-водяные реакторы. Реакторы с графитовым замедлителем, такие как РБМК, представляют собой другую ветвь генеалогического древа — они происходят от реакторов для наработки плутония. «Основным топливом для этих реакторов является уран-235, но его запасы хотя и довольно значительны, тем не менее ограничены, — объясняет «Популярной механике» начальник отдела системных стратегических исследований Научно-исследовательского центра «Курчатовский институт» Станислав Субботин. — Этот вопрос начал рассматриваться еще в 1960-х годах, и тогда планируемым решением этой проблемы считалось введение в ядерный топливный цикл отвального урана-238, запасов которого почти в 200 раз больше. Для этого планировалось построить множество реакторов на быстрых нейтронах, которые бы нарабатывали плутоний с коэффициентом воспроизводства 1,3−1,4, чтобы избыток можно было использовать для питания тепловых реакторов. Быстрый реактор БН-600 был запущен на Белоярской АЭС — правда, не в режиме бридера. Недавно там же был построен и еще один — БН-800. Но для построения эффективной экосистемы атомной энергетики таких реакторов нужно примерно 50%».


Все радиоактивные изотопы, которые встречаются в природе в естественных условиях, принадлежат к одному из трех семейств (радиоактивных рядов). Каждый такой ряд — это цепочка ядер, связанных последовательным радиоактивным распадом. Родоначальники радиоактивных рядов — долгоживущие изотопы уран-238 (период полураспада 4,47 млрд лет), уран-235 (704 млн лет) и торий-232 (14,1 млрд лет). Цепочки заканчиваются стабильными изотопами свинца. Существует еще один ряд, начинающийся с нептуния-237, но период его полураспада слишком мал — всего лишь 2,14 млн лет, поэтому в природе он не встречается.

Могучий торий

Вот тут как раз на сцену и выходит торий. «Торий часто называют альтернативой урану-235, но это совершенно неправильно, — говорит Станислав Субботин. — Сам по себе торий, как и уран-238, вообще не является ядерным топливом. Однако, поместив его в нейтронное поле в самом обычном водо-водяном реакторе, можно получить отличное топливо — уран-233, которое затем использовать для этого же самого реактора. То есть никаких переделок, никакого серьезного изменения существующей инфраструктуры не нужно. Еще один плюс тория — распространенность в природе: его запасы как минимум втрое превышают запасы урана. Кроме того, нет необходимости в разделении изотопов, поскольку при попутной добыче вместе с редкоземельными элементами встречается только торий-232. Опять же, при добыче урана происходит загрязнение окружающей местности относительно долгоживущим (период полураспада 3,8 суток) радоном-222 (в ряду тория радон-220 — короткоживущий, 55 секунд, и не успевает распространиться). Кроме того, торий имеет отличные термомеханические свойства: он тугоплавкий, менее склонен к растрескиванию и выделяет меньше радиоактивных газов при повреждении оболочки ТВЭЛ. Наработка урана-233 из тория в тепловых реакторах примерно в три раза более эффективна, чем плутония из урана-235, так что наличие как минимум половины таких реакторов в экосистеме атомной энергетики позволит замкнуть цикл по урану и плутонию. Правда, быстрые реакторы все равно будут нужны, поскольку коэффициент воспроизводства у ториевых реакторов не превышает единицы».


На производство 1 ГВт в течение года требуется: 250 т природного урана (содержат 1,75 т урана-235) требуется добыть 215 т обедненного урана (в том числе 0,6 т урана-235) уходят в отвалы; 35 т обогащенного урана (из них 1,15 т урана-235) загружаются в реактор; отработанное топливо содержит 33,4 т урана-238, 0,3 т урана-235, 0,3 т плутония-239, 1 т продуктов распада. 1 т тория-232 при загрузке в жидкосолевой реактор полностью конвертируется в 1 т урана-233; 1 т продуктов распада, из них 83% - короткоживущие изотопы (распадаются до стабильных примерно за десять лет).

Однако у тория есть и один достаточно серьезный минус. При нейтронном облучении тория уран-233 оказывается загрязненным ураном-232, который испытывает цепочку распадов, приводящую к жесткому гамма-излучающему изотопу таллий-208. «Это сильно затрудняет работу по переработке топлива, — объясняет Станислав Субботин. — Но с другой стороны, облегчает обнаружение такого материала, уменьшая риск хищений. Кроме того, в замкнутом ядерном цикле и при автоматизированной обработке топлива это не имеет особого значения».


Термоядерное зажигание

Эксперименты по использованию ториевых ТВЭЛов в тепловых реакторах ведутся в России и других странах — Норвегии, Китае, Индии, США. «Сейчас самое время вернуться к идее жидкосолевых реакторов, — считает Станислав Субботин. — Химия фторидов и фторидных расплавов хорошо изучена благодаря производству алюминия. Для тория реакторы на расплавах солей гораздо более эффективны, чем обычные водо-водяные, поскольку позволяют гибко производить загрузку и вывод продуктов распада из активной зоны реактора. Более того, с их помощью можно реализовать гибридные подходы, используя в качестве источника нейтронов не ядерное топливо, а термоядерные установки — хотя бы те же токамаки. К тому же жидкосолевой реактор позволяет решить проблему с минорными актинидами — долгоживущими изотопами америция, кюрия и нептуния (которые образуются в облученном топливе), «дожигая» их в реакторе-мусорщике. Так что в перспективе нескольких десятилетий в атомной энергетике без тория нам не обойтись».

Поделитесь с друзьями или сохраните для себя:

Загрузка...